SECURITY SYSTEM USING DEPTH CAMERA AND IOT
Abstract
The depth camera is widely used in motion games known as Kinect. The depth camera is an infrared camera used for image-processing three-dimensional that detected the shapes and contours of objects within an image. This article explained that the process of image-processing data could make the security system motion-based for a safe room by using the threshold technique. The threshold technique is used as a detector. By separating objects with the background image. The threshold technique could be present to a histogram. A change of the histogram suddenly could trigger the alarm. The result from 100 experiments is the depth camera could detect movement at a distance one until 2 meters and low light condition or bright light condition that 0 until 10 candelas with a ratio of success is 100%. Another result from 100 on the second experiment is that the depth camera can detect movement through mirror reflection with a rate of achieving 56%. The depth camera is well to detect motion, although depth camera couldn't detect movement at a distance above 2 meters, and has 44% fail to detect movement through mirror reflection, the infrared is reflected itself.
References
F. H, Kristomson, Subrata, Rosalia H, Gozali. 2018. Internet Based Room Security System Of Things By Using Android Applications, Tesla, vol. 20, no. 2, pp. 140–149
A. D. T. Hantoro. 2016. Kinect Sensor Integration in the Application of Virtual Dressing Clothing Models and Bag Accessories, IOSR J. Econ. Financ., vol. 3, no. 1, pp. 1–217
I. Surya, A. Permana, I. Wijayanto, and E. Susatio. 2016. Intruder Detection Based On Depth Frame Analysis Using Kinect Camera, vol. 3, no. 3, pp. 4765–4772
S. Kean, J. C. Hall, and P. Perry. 2011. Meet the Kinect, Meet Kinect.
T. Yamada et al. 2011. A stretchable carbon nanotube strain sensor for human-motion detection, Nat. Nanotechnol., vol. 6, no. 5, pp. 296–301
R. P. Singh and M. Dixit. 2015. Histogram Equalization: A Strong Technique for Image Enhancement, Int. J. Signal Process. Image Process. Pattern Recognit., vol. 8, no. 8, pp. 345–352
W. P. Putra et al. 2008. Comparative Analysis of Histogram Equalization and Logarithmic Image Processing (Lip) Model for Image Enhancement, J. Inform., vol. 2, no. 2, pp. 200–208
F. Kurniawan, H. Sajati, and O. Dinaryanto. 2017. Detection of Traffic Density Using the Standard Image Histogram Intersection, Semin. Nas. ReTII, pp. 1–8.
M. I. KURNIAWAN, U. SUNARYA, and R. TULLOH. 2018. Internet of Things: Raspberry Pi-based Home Security System and Telegram Messenger, ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 6, no. 1, p. 1
S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and G. Ferrari. 2015. IoT-OAS: An oauth-based authorization service architecture for secure services in IoT scenarios, IEEE Sens. J., vol. 15, no. 2, pp. 1224–1234
O. K. Sulaiman and A. Widarma. 2017. Cloud Computing Internet Of Things (IoT) System in Campus Area Network, ReseachGate, no. April, pp. 9–12
F. TongKe. 2013. Smart Agriculture Based on Cloud Computing and IOT, J. Converg. Inf. Technol., vol. 8, no. 2, pp. 210–216
M. Barcelo, A. Correa, J. Llorca, A. M. Tulino, J. L. Vicario, and A. Morell. 2016. IoT-Cloud Service Optimization in Next Generation Smart Environments, IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 4077–4090
B. H. Mustafa. 2017. Development of Gateway Devices for IoT Sensors Using Raspberry Pi Board Based on MQTT Protocol
M. Chiang and T. Zhang. 2016. Fog and IoT: An Overview of Research Opportunities, IEEE Internet Things J., vol. 3, no. 6, pp. 854–864
L. Yang, L. Zhang, H. Dong, A. Alelaiwi, and A. El Saddik. 2015. Evaluating and improving the depth accuracy of Kinect for Windows v2, IEEE Sens. J., vol. 15, no. 8, pp. 4275–4285
J. Lee, L. Jin, D. Park, and Y. Chung. 2016. Automatic recognition of aggressive behavior in pigs using a kinect depth sensor, Sensors (Switzerland), vol. 16, no. 5
M. Kefer and W. Kubinger. 2011. Evaluation of Kinect depth sensor for use in mobile robotics, Ann. DAAAM Proc. Int. DAAAM Symp., vol. 22, no. 1, pp. 147–148
K. Khoshelham and S. O. Elberink. 2012. Accuracy and resolution of kinect depth data for indoor mapping applications, Sensors, vol. 12, no. 2, pp. 1437–1454
S. Nakov and V. Kolev. 2013. Fundamentals of Computer Programming with C#. Sofia: Bulgarian Association of Software Developers.
E. Brown. 2014. Web Development with Node & Express, First Edit., vol. 53, no. 9. Gravenstein Highway North, Sebastopol: O’Reilly
A. Downey. 2012. Think Python, 2.0.17., vol. 53. Needham, Massachusetts: Green Tea Press
V. Vujović, & M. Maksimović. 2014. Raspberry Pi as a Wireless Sensor node: Performances and constraints. 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2014 - Proceedings, (May 2014), 1013–1018
N. Aeni Hidayah, & E, Fetrina. 2017. Rancang Bangun Sistem Pendukung Keputusan Kenaikan Jabatan Pegawai dengan Metode Profile Matching (Studi Kasus: Kementerian Agama Kantor Wilayah DKI Jakarta). Studia Informatika: Jurnal Sistem Informasi, 10(2), 127–134
Dewanto, Budi, Maconie, S. Windy. 2013. Perancangan Sistem Keamanan Ruangan Berbasiskan Mikrokontroller ATMEGA8535. Jurnal Teknik Komputer, 21(9), 24–35
Ir, P. H. M. Fauzi , H. Sc, M., Ph, D. Tjandrasa. 2010. Implementasi Thresholding Citra Menggunakan Algoritma Hybrid Optimal Estimation. Teknologi Informasi.
H. Hartono, L. Liliana, & R. Intan. 2015. Pendeteksian Gerak Menggunakan Sensor Kinect for Windows. Jurnal Infra, 3(2), pp-375
C. Hasiholan, R. Primananda, & K. Amron. 2018. Implementasi Konsep Internet of Things pada Sistem Monitoring Banjir menggunakan Protokol MQTT. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(12), 6128–6135
E. T. Indarto, E. Leksono, & E. M. Budi. 2015. Perancangan Sistem Pendeteksi Kehadiran Manusia Menggunakan Sensor Kinect. Jurnal Otomasi Kontrol Dan Instrumentasi, 7(1), 27
P. Roy, S. Goswami, S. Chakraborty, A. T. Azar, & N. Dey. 2014. Image Segmentation Using Rough Set Theory. International Journal of Rough Sets and Data Analysis, 1(2), 62–74
J. Sianturi, R. F. Rahmat, & E. B. Nababan. 2018. Sistem Pendeteksian Manusia untuk Keamanan Ruangan Human Detection System For Room Security Using Viola - Jones. Journal of Informatics and Telecommunication Engineering, 1(2), 61–72
N. Singla. 2014. Motion Detection Based on Frame Difference Method. International Journal of Information & Computation Technology, 4(15), 1559–1565